Enrollment No: _____ Exam Seat No: _____ C.U.SHAH UNIVERSITY **Summer Examination-2017**

Subject Name : Linear Algebra-II

	Subject	Code	: 4SC04MTC2	Branch	: B.Sc.(Mathematics, Physics)						
	Semester	r :4	Date: 18/04/2017	Time : 10:	30 To 01:30	Marks : 70					
	Instructions:										
	(1) U	(1) Use of Programmable calculator & any other electronic instrument is prohibited.									
	(2) I	(2) Instructions written on main answer book are strictly to be obeyed.									
	(3) Draw neat diagrams and figures (if necessary) at right places.										
	(4) A	Assum	ne suitable data if needed	•							
Q-1		Atte	mpt the following ques	tions:			(14)				
-	a)	Defi	ne: Distance between two	o vectors			(1)				
	b)	Find angle between (-x, y, w, z) and (y, x, z, w).									
	c)	State any one property of determinant.									
	d)	True/false: $(W^{\perp})^{\perp} = W$.									
	e)	Define : $C[0,1]$.									
	f)	Write the standard form of imaginary ellipse.									
	g)	What is characteristic vector.									
	h)	True	e/false: If T is symmetric	linear transfo	ormation then the	e matrix associated	(1)				
		with T is always symmetric.									
	i)	Wha	at do you mean by Conics	s and Quadric	s ?		(1)				
	j)	Defi	ne : Orthonormal vectors	5.			(1)				
	k)	Find	inner product of (3,-1,6	b) and (5,-1,2)	•		(1)				
	l)	Wha	t is symmetric linear trar	nsformation.			(1)				
	m)	True	$\frac{1}{2}$ /false: Every orthonorma	al vectors are	orthogonal.		(1)				
	n)	If T:	$R^{3} \rightarrow R^{4}$ is orthogonal lin	ear transforma	ation and $u = (1,$	(2, 3) then find $ Tu $.	(1)				
Atte	mpt any f	four q	uestions from Q-2 to Q	-8							
Q-2		Atte	empt all questions				(14)				
	a)	Defi	ne : Orthonormal basis.			1	(2)				
	b)	Find	the angle between f and	g where $f(t) =$	$t and g = h-3\langle h \rangle$	$(f)f, h(t) = t^2,$	(4)				
		when	re $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$.								
	c)	State	e and prove Riesz-represe	entation theore	em.		(8)				
Q-3		Atte	empt all questions				(14)				
	a)	Prov	ve that $W \cap W^{\perp} = \{0\}$.				(2)				

Page 1 || 3

	b)	Prove that $ x = y $ iff $x - y \perp x + y$	(4)	
	c)	Show that medians of triangle are concurrent.		
Q-4	a)	Attempt all questions Define : $P_v(u)$	(14) (2)	
	b)	Using gramschmidth orthogonalization process find orthonormal basis from the basis $B = \{(2,1,-1), (1,1,1), (0,1,2)\}.$	(4)	
	c)	Find $P_v(u)$ and $P_u(v)$ for the following.	(8)	
		(1) $u=(1,-1)$, $v=(-2,3)$. (2) $u=\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$, $v=\begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix}$.		
Q-5	a) b)	Attempt all questionsDefine : Orthogonal linear transformation.If $f: V \rightarrow V$ is any map such thatI. $f(0) = 0$ II. $\ f(x)-f(y)\ = \ x-y\ $,	(14) (2) (6)	
		then show that f is orthogonal linear transformation.		
	c)	With usual notation prove that	(6)	
		$R_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \text{ and } \qquad \rho_{\theta} = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$		
Q-6	a)	Attempt all questions Show that $det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$.	(14) (4)	
	b)	If $A = \begin{bmatrix} 0 & -1 & 3 \\ 2 & 5 & -4 \\ -3 & 7 & 1 \end{bmatrix}$, then find A^{-1} .	(6)	
	a)	Solve the system of equation by Cramer's rule $x + y = 0$, $y + z = 1$, $z + x = -1$.	(5)	
Q-7	a)	Attempt all questions Find vol[v_1 , v_2 , v_3] where $v_1 = (\frac{-2}{3}, 0, 0)$, $v_2 = (0, \frac{5}{2}, 0)$, $v_3 = (0, 0, \frac{-7}{5})$	(14) (2)	
	b)	If $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ then show that	(6)	

Page 2 || 3

$$\mathbf{x} \times \mathbf{y} = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}.$$
(6)
(6)
(6)
(6)
(6)
(6)
(6)

Then compute det A using column vectors and inner product.

Attempt all questions

Q-8

a) Write only the standard equations for the following conics and quadrics. (2)

(14)

(1) Point Ellipse (2) Hyperbolic Cylinder.

- **b**) Let T: V \rightarrow V is symmetric linear transformation then show that the Eigen vectors (2) v_1 and v_2 with respect to Eigen values λ_1 and λ_2 ($\lambda_1 \neq \lambda_2$) are orthogonal.
- c) Reduce the equation $4xz + 4y^2 + 8y + 8 = 0$ into standard form also determine (10) the quadrics.

